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Abstract--Using kinetic theory approach, the fluid- and thermodynamics aspects of  a vapor next to its 
interphase surface is studied under conditions of  arbitrarily strong interphase processes in single 
component systems. The physical domain considered is a boundary layer known as the Knudsen layer, 
a few molecular mean free paths thick, in which the vapor adapts to given external equilibrium conditions. 
It is shown that the limiting flow conditions in strong evaporation closely corresponds to the sonic state. 
Expressions for the mass transfer are derived both in the general and in the linear cases, and comparisons 
are made with the classical Hertz-Knudsen and Schrage formulae which are both shown to be incomplete. 
The vapor is found to be far from its saturated state, both at the interphase surface and at the border 
of  the continuum region. The coupling between the Knudsen layer and this latter region is shown by an 
example of  evaporation into a shear flow. 

Key Words: evaporation, condensation, Knudsen layers 

1. I N T R O D U C T I O N  

Ever since the pioneering work of  Hertz (1882) and Knudsen (1915) on the evaporation of  liquid 
mercury into vacuum, it has been known that strong interphase processes require treatment from 
the standpoint of  kinetic theory, due to molecular non-equilibrium effects in such systems. The case 
studied by these authors was extreme in the sense that the process took place in a low-density 
environment, but it has been established more recently, for instance by Kogan & Makashev (1971), 
Cipolla et al. (1973), Ytrehus (1977), Sone & Onishi (1978) and Aoki & Cercignani (1983), that 
non-equilibrium effects are equally important also at ordinary pressure levels, provided that we are 
dealing with single component or multicomponent volatile substances. The explanation for this 
circumstance is connected with the lack of inert background gas in such systems, that can provide 
a diffusional resistance to the vapor in front of the interphase surface. As a result of this, the 
vapor-gas may attain a considerable velocity normal to the surface, and important non-equilibrium 
effects, like temperature jumps across the phase surface and deviation from saturation in the vapor 
state, may occur; and, even more fundamentally, the mass flux formulae for the interphase process 
itself have to be derived from the molecular theory in such cases. 

Some of  the physical issues involved may be discussed with reference to figure 1, showing a plane 
interface between a dense (solid or liquid) phase and its own vapor: molecules are released, or 
evaporated, from the interface according to a certain distribution function f~, usually taken to be 
a half-range Maxwellian in velocity space ~, and depending upon parameters such as the 
temperature TL at the dense-phase side of the surface and the corresponding vapor saturation 
density pe = psat(TL). Another group of molecules represented through the a priori  unknown 
distribution func t ion f  are impinging from the vapor space upon the surface, and a certain fraction 
of  these is recondensed at the surface while the remaining part is reflected with the distribution 
function fi back into the vapor, as indicated in the figure. At equilibrium, the flux of  molecules 
leaving the interphase surface equals that of  the impinging ones, and the net mass transport, and 

fThis paper was presented at the 7th Norway-lsrael Symposium on Fluid Mechanics of Heterogeneous Systems, Trondheim, 
June 1994. 
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Figure 1. Definition sketch for evaporation Knudsen layer problem. 

thereby the bulk velocity v.~, becomes zero. The temperature becomes uniformly equal to TL 
throughout the system, and the density in the vapor equals the saturation density pe = psa,(TL). 

In general, however, the molecular fluxes to and from the surface are not equal, and this leads 
to a net mass transport and to a non-zero bulk velocity in the normal direction (figure I). The 
temperatures associated with the two molecular streams (TL and T~:) may also be rather different, 
causing non-equilibrium effects to occur in a kinetic boundary layer of thickness of the order of 
the molecular mean free path 2 in the vapor next to the surface; and the density and the pressure 
in the vapor are nowhere equal to their saturation values. Any fluid- and thermodynamic variable 
must in fact be computed from the dynamic laws that apply to transport phenomena on the mean 
free path scale in gases, and these are known to be contained in the classical Boltzmann equation 
of kinetic theory. 

The total evaporated mass flux from the surface is easily computed in the case that Jg is a 
half-range Maxwellian in the velocity space. The result is 

me = P°x/ ~ [11 

Now, Hertz (1882) and Knudsen (1915) reasoned that the impinging mass flux could be expressed 
in a similar way to an external Maxwellian f~ with parameters p~, vo: and T~, and, by neglecting 
the macroscopic vapor velocity v-~, they arrived at the result 

r& = p ~ /  ~ [2] 

The net evaporated mass flux was therefore expressed as 

~/ 2x ~/ 2 x '  [31 

which is now known as the classical Hertz-Knudsen formula. In spite of the approximate nature 
and of  important theoretical shortcomings of the expression for r&, the formula is still in common 
use, partly due to its simplicity and partly due to lack of better knowledge. The formula was 
significantly improved by Schrage (1953), and by Kucherov & Rikenglas (1960), who took into 
account the vapor velocity v~ and thus included non-linear convective effects in the theory, without 
actually solving the governing gas-kinetic equations for the problem. This was done, although in 
a linear sense and for weak processes, by Patton & Springer (1969), Shankar & Marble (1971), Pao 
(1971), and by Cipolla et  al. (1973) as mentioned above, and by Gajewski et  al. (1974) for weakly 
non-linear cases. Then, Anisimov (1968) and Luikov et  al. (1971) solved non-linear gas-kinetic 
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moment equations for the limiting case of strong evaporation at sonic conditions, and this 
approach was extended by Ytrehus (1977) to arbitrary strong evaporation, i.e. to cases with finite 
back-pressures, so as to also include the detailed structure of the expanding vapor layer from the 
interphase boundary and out into the equilibrium flow. Also, Monte Carlo simulations have been 
made of the non-linear evaporation condensation problem by Murakami & Oshima (1974), Kogan 
& Abramov (1991), Sibold & Urbassek (1993), and detailed numerical solutions of non-linear 
Boltzmann and BGK equations are given by, for instance, Yen (1973), Sone et al. (1990) and by 
Aoki et al. (1990). 

For evaporation from the interphase surface the situation is largely as follows: for a given 
temperature TL at the dense-phase side of the surface, and for a given corresponding vapor 
saturation pressure pe (TL), the process depends upon one additional free parameter; the ratio po/p~, 
where p~ is the external pressure. Other macroscopic quantities, like temperature, velocity and mass 
flux, are found to be unique functions of this one parameter. The gas-kinetic solution exhibits the 
length-scale of the molecular mean free path in the vapor, and this defines the vapor Knudsen layer 
adjacent to the surface. The solution exists for a parameter range 1 ~< pe/p~ <<. (pe/po~),, where 
(pe/po~), corresponds to Mach number unity for the normal velocity component and has a value 
close to 4.81, depending slightly upon the specific solution method chosen. Below this value the 
velocity is subsonic and goes to zero as pe/p~ goes to unity. 

For net condensation onto the interphase surface the situation is less unique in the sense that 
two external parameters, for instance the pressure p~ and the temperature To, may be prescribed, 
and the solution will thus depend upon both po/p~ and TL/T~. According to how the external flow 
is generated, even supersonic states may occur, as discussed in particular by Sone et al. (1990), 
Kryukov (1991) and by Kogan & Abramov (1991). However, in the linear theory of weak 
condensation, the two-parameter aspect disappears, and in this regime condensation and 
evaporation become antisymmetric phenomena as would be expected on intuitive grounds. Still, 
outside of the Knudsen layers, in the continuum regime of flow, the two phenomena are highly 
asymmetrical, as was pointed out by Aoki & Cercignani (1983) and by Ytrehus & Aukrust (1986). 

At present the results from kinetic theory for evaporation and condensation at planar surfaces 
are fairly complete and consistent for monatomic species, and some results are also available for 
polyatomic gases as given, for instance, by Cercignani (1981) and Frezzotti (1991). Mixtures have 
been treated by Ferron (1986), Onishi (1986) and by Frezzotti (1986), and an extension to dusty 
vapors has been given by Ytrehus & Stinessen (1991). Some results are also available for spheres 
(Edwards & Collins 1969; Onishi 1986; Sone & Sugimoto 1993) and for cylinders (Sugimoto & Sone 
1992), and flows with evaporation in more complex geometries have been simulated by the Monte 
Carlo method by Nanbu (1986). 

The longstanding and strong interest in the evaporation-condensation phenomena as is evident 
from this, by far not exhaustive review of literature on the subject, stems primarily from the 
fundamental aspects of the problems, but it has also been motivated by engineering applications 
such as vacuum distillation, vacuum vapor deposition, isotope separation and laser-pulse sputtering 
at surfaces. Also space applications, like outgassing from surfaces and its interaction with control 
and measurement equipment, have given some momentum to this research activity, along with even 
more exotic applications in astrophysics, like the formation and evolution of the dusty coma 
around active comets, e.g. Crifo (1986) and Ytrehus & Stinessen (1991). 

In this paper we will review the moment solution of the Boltzmann equation for arbitrary strong 
evaporation, as originally given by Ytrehus (1977), and relate the results to the classical ones, in 
particular to those of Hertz-Knudsen and of Schrage as mentioned above. In so doing we shall 
linearize our results and develop formulae that can be readily used in conjunction with conventional 
macroscopic fluid dynamics. To show how coupling to continuum fluid mechanics actually works, 
we treat a specific example in which water is evaporated into a shear flow of its own vapor, resolving 
the macroscopic flow on the Navier-Stokes level, using a standard TEACH numerical code both 
for laminar and turbulent flow. Although not entirely new, this part of the study has not been 
published before, and it should therefore be of some original interest. We also discuss the 
thermodynamic state of the vapor and show that, in the case of water, the vapor is highly 
supersaturated as it enters the continuum shear flow. Although approximate in nature, the moment 
solution is known to produce fairly accurate results: within 5% of the values obtained for 
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macroscopic quantities by numerical BGK solutions and Monte Carlo simulations, as shown in 
a recent compilation of  data by Sibold & Urbassek (1993). In addition, the method is simple and 
leads to a closed form solution for the microscopic structure of  the flow, even for non-linear and 
critical flow conditions. 

2. THE EVAPORATION KNUDSEN LAYER PROBLEM 

2.1. General aspects 
It is generally accepted that the fundamental Boltzmann equation of  kinetic theory gives a 

realistic description of  transport phenomena in gases down to the scale of the molecular mean free 
path. For  structureless molecules, i.e. monatomic gases, the equation reads, in non-dimensional 
form and in the absence of  external force fields (Chapman & Cowling 1952): 

Kn(~t+~Jf~fxj)=f(ff/-ffOgbdbdo)d~, [41 

wheref( t ,  x, 4) is the distribution function, ~ is molecular velocity and g = [~ - ¢~[is the modulus 
of  the relative velocity of  molecules that collide with each other, b is the impact parameter in a 
binary collision, o9 is the azimuthal angle a n d f  = f (t, x, ~'), in which 4' is a post-collision velocity. 
J] and f; are similarly defined for the collision partners. The only dimensionless parameter that 
occurs in [4] is the Knudsen number 

2 
K n -  L [51 

where 2 is the molecular mean free path 

2 ~ ~q [61 pa ' 
and L is the length scale in the flow problem. Here, p is the mass density of  the gas, r/its viscosity 
and a = x/TRT is the speed of sound. 

It is well known that for small Knudsen numbers, i.e. for Kn<< 1, [4] can be expanded in powers 
of  Kn around the local Maxwellian distribution function so that the conventional Navier-Stokes 
description is recovered at the first correction level. More importantly, this Chapman-Enskog 
procedure also gives the criteria for validity of  the Navier-Stokes equations; these are 

2 
Kng = ~-~<< 1 [7] 

where Lg is the smallest gradient-length in the flow; see for instance Chapman & Cowling (1952). 
It is, however, also well known that the convergence of the Chapman-Enskog expansion is 
non-uniform, and that it fails in singular layers next to the boundary, in which unbounded gradients 
may occur in the limit of  K n ~ 0 ,  in the sense 

of 1 
~ - -  [ 8 ]  

~Xn Kn ' 

so that the full kinetic description, albeit one-dimensional, must be retained there. These are the 
Knudsen layers, for which the dimensional Boltzmann equation reads in steady cases 

~y~f~ =f(f'f~-ffl)gbdbdmd~l, [91 

where the y-axis has been chosen as the coordinate normal to the boundary. This is why the 
Knudsen layer version of  the Boltzmann equation is one-dimensional, and also why, in the general 
case, this version must retain the full non-linearity of  the equation. 
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2.2. Boundary conditions 

The dependent variable in the Boltzmann equation is the distribution function f ,  defined such 
that fd~ gives the number of  molecules per unit volume having velocities in the range [4, ~ + d~]. 
Since [9] is of  first order in the spatial variable y, one condition should be imposed at the boundary. 
In addition the function must be bounded at infinity. For evaporation at the boundary the usual 
conditions are 

f ( y  = O,~y > O) = a,~C~ + (1 -- aw)f [10] 

f ( y + m , ¢ )  =f~, [11] 

where f~ is a Maxwellian based upon the temperature TL 
(figure 1) and upon the corresponding vapor saturation 

pJm ( 
f e -  (2I~RTL)3/2 exp - -  

and where f~ is a Maxwellian based upon the external 

po~/m ( 
f ~ -  (2~RT~)3/2 exp 

at the dense-phase side of  the boundary 
density po = psa t (TL) :  

flow variables: 

2RT~ J [13] 

Here, m is the mass of  a molecule, R is the gas constant per unit mass and u~ = (0, v~, 0) is the 
one-dimensional velocity vector at the outer edge of  the Knudsen layer, f is a reflection of  the a 
priori unknown distribution function f for molecules incident upon the surface and aw is the 
so-called evaporation or condensation coefficient that takes values in the range [0, 1] depending 
upon the properties of  the surface. Equation [10] means that only a fraction aw of  molecules in 
the state [12] are actually evaporated from the surface, and the same fraction aw of incident 
molecules is recondensed into the surface. Therefore, the remaining fraction (1 - aw) of these latter 
molecules occurs in the reflection. 

For  simplicity we choose the conventional and most popular case of aw = 1, and refer to 
Aoki et al. (1991) and Kogan (1992) for a discussion of  the more general case with aw¢ 1. Some 
effects of  the non-unity evaporation-condensation coefficient are however considered in section 3.7 
in the case of linear flow conditions. 

Two points should be made at this stage: (i) although the distribution function for emission f~ 
is based upon the saturation density po, the vapor state at the boundary will not, in general, be 
saturated, due to the fact that [10] implies that only the half range ~v > 0 of  the function should 
be applied, and the function f for impinging molecules does not correspond to the remaining half 
range ~y ~< 0 off~ as given in [12]; (ii) the external Maxwellian is based upon the fluid dynamics 
parameters p~, v~, To that are themselves an outcome of the evaporation process and that must 
be obtained with the solution. This Maxwellian state occurs at 'infinity' on the molecular mean 
free path scale 2, and corresponds to the Euler or Navier-Stokes level of  fluid mechanics, as pointed 
out by Kogan & Makashev (1971). We assume that the external pressure is a known control 
parameter, and that it may be calculated from the equation of state 

p® = p®RTo~ [14] 

along with the reference vapor pressure at the liquid temperature 

pe = peRTL = p~t(TL)RTL [15] 

In addition it may be noted that, although the flowfield may also contain a velocity component 
along the surface, caused by driving terms other than evaporation, this effect is normally negligible 
within the Knudsen layer, since the shear boundary layer thickness 6 is typically much larger than 
2. We have, therefore, 6 ..~ L/x/Re 

). 2 M [16] 
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where [6] has been used to derive the fundamental relation 

). M 
Kn - L R e '  [17] 

M = U/a being the Mach number and Re = pUL/rl being the Reynolds number for the flow along 
the surface. Therefore, the shear flow velocity at the edge of the Knudsen layer will be of the order 

tgU2~  U M [181 

which is small compared to U under the normal flow conditions 

M 
_ ~ -  << 1 [ 1 9 ]  
4Re 

Equation [18] also gives the order of magnitude of an eventual slip velocity along the boundary, 
which again, by condition [19], is negligible in normal cases. This is the reason why only the normal 
velocity component v® occurs in the external Maxwellian [13] and tangential flow and slip effects 
are absent in the boundary conditions. 

2.3. The moment method 

Instead of attempting a solution of [9] as it stands, a set of moment equations is generated by 
multiplying the equation by the velocity functions ~,, = (m, m~y, -½m~ 2, m~)  for # = 1, 2, 3, 4, after 
an assumption is made for the form of the distribution function: 

f (y,{)  = a+e(y)f+c({) + a+~(y)f%o({) + ag (y)fg ({) [20] 

Here, f$(~) is the ~y > 0 half-range of the function f~ given in [12], and f~(¢) and f£ (~)  
have similar definitions related to the function f~o in [13]. The a(y)s are amplitude functions 
to be determined, and their boundary conditions are derived from [10] and [11], with aw = 1 as 
follows: 

a ,  + = 1 a~ + = 0 

y = 0 : a g = 0  y + m '  a~ + = 1 
ag = fl a~ = 1 [21] 

The boundary value fl = ag (0) is an unknown parameter that must be obtained in the solution 
along with v~, T® and p®. These four parameters then completely specify the flow conditions at 
the exit of the Knudsen layer (figure 1) and at the surface, since we have, by [10], [20] and [21], 

f ( y  = O, 4) ~f(Y = O, ~y>0) =f~+ 
= ( f (y  0, ~y < 0) = flf?~ 

[22] 

Macroscopic quantities are then computed in the standard way, i.e. 

p= ymfd , pv= fm Jd  [23] 

3 
p R T  = m(~ - u)2fd~, 

where, in this case u = (0, v, 0). 
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The moment equations have the following basic form 

0y YI~¢~ = 0, ].~ 1,2,3 
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[24a] 

Oy y~,,fd¢ = aQ[m~] [24b] 

where AQ[m¢~] is the contribution from the collision term of [9] when integrated with the weight 
function m¢~. For Maxwell molecules; i.e. molecules with inverse fifth-power repulsive interaction 
force, this collision term is expressed in closed form as (Vincenti & Kruger 1965) 

AQ[rn¢2] = Z~ /  [25] 

where Z~y is the viscous stress component 

1 f(~ -- u)~fd~], Zjy=-  mI~ (~y-v)~cd¢- ~ [26] 

and where 2e is a reference mean free path defined as 

[ r/o(TL) 2e = ] [27] Po ~l 2RTL' 

being a specific example within the general rule layed down in [6]. Here, qo(TL) is the viscosity of 
the vapor in the emitting mode; i.e. at the saturated state corresponding to the temperature TL of 
the dense-phase side of the interphase surface. 

Equations [24] constitute a closed system for our problem when the Ansatz ([20]) for the 
distribution function f is taken into account. This means that the four equations are sufficient to 
determine the open parameters in the problem, i.e. p®, v~o, To and the three amplitude functions 
&(y), a~(y) and ag(y) in the expression [20]. 

The method would work for any molecular interaction law, but Maxwell molecules offer 
the simplest calculation. However, the interaction law will have an influence only upon the 
spatial structure of the flow, and not upon the above parameters (p®, vo~, ToO that 
determine most quantities of practical interest, like for instance, the mass and heat fluxes 
in the process. To show this in more detail, we next proceed to a discussion of the conservation 
equations [24a], demonstrating their simple closed form solution in the general non-linear 
case. 

2.4. Conservation equations 

The three equations [24a] for # = 1, 2, 3 are the conservation equations, since the generating 
functions m, m~y, ½m~ 2 are invariants during binary collisions and render the collision term AQ 
equal to zero. The equations are trivially integrated in the space variable y, and after the 
distribution function [20] is inserted and the half-range integrations in velocity space are performed, 
there results 

f-R--TL + ~ R~oo p = J  ~ F -  ag(y) = p=vo~ Pc/ ~ a e  (y)-}- p ~/ ~F+a+(y)-- RT= [28a1 
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1 1 p~RT~G-aL(y) = p~v~ + p~RTo p.RTLa+(y) + p~RT~:G+a+(y) + 

2p~RTLN/RTL-~ a +~ (y) + 2p~oRT~N~R-2@ H+a+~(y) - 2 p ~ R T ~ 2  @ H-a~o(y) 

[28b1 

The equations express the constant fluxes of mass, momentum and energy across the Knudsen 
layer, and in the right-hand sides these fluxes are evaluated at the external Maxwellian equilibrium 
state. The functions F ± , G -+ and H -+ are parameters that arise in the half-range integrations, and 
are defined in terms of the external speed ratio 

in the following way: 

_ v ~  [291  s~ 

F -+ = ~S~(-I-_ 1 + erfS~) + e -s~ 

G -+ = (2S~ + 1)(1 + erfS~) + + S ~ o e  s~: 

~/rr 

H+- = x ~ S ~ ( s ~ +  5) (+-l +erfS~)+ l 

where erfS~ is the error function 

e r f S ~ -  x ~  e-x2dx [31] 

In particular, at y = 0 and with [21] taken into account, the above system [28] is reduced to 

pe ~ - p~ / ~ 6 F -  = p~v~ [32a] 

1 1 
p~ ~ + po~RT~ p¢RTL + -~ p~RT¢ fiG- = v 2 

5R ) 
[32c1 

These equations relate the states at the interphase surface and external equilibrium in a similar way 
as the Rankine-Hugoniot  equations relate the states upstream and downstream of  a shock wave. 
The equations are solved for the three quantities S~, ~/T~/TL and ~ in terms of the assumed known 
control parameter 

z¢ = L _  p¢RTL [331 
p~ p~RT~ ' 

[32b1 

[30a] 

[30b] 

[30cl 

( 25 ) 
= p~v~o v~ + -~ RT~o [28c] 
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with the following result: 

2eS~ 
Ze 

F- + X/--T~L G- 

[34a] 

[34b] 

2(2S~ + 1 ) ~  L - 2x/~S~ 

[3 = [34c] 

F- + ~-T~L G- 

For  technical reasons S~o is considered known and ze is considered unknown in these formulae. The 
results are summarized in table 1 below, in which also the quantity 

p ® _  1 
pe z, Too/TL [35] 

has been included to complete the external state. 
From what is contained in the table, together with what was said in connection with [24] in the 

previous section, it is clear that most of  the results of  practical interest in the evaporation problem 
are already obtained at this 'Rankine-Hugoniot '  level of  analysis; and ,  like in the original 
Rankine-Hugoniot  relations, the results are independent of gas properties related to intermolecular 
collision law, e.g. viscosity and heat conductivity. 

2.5. Knudsen layer structure 

Before [24b] is elaborated upon to give the detailed non-conserved moment equation, an 
important property of  the system [28] is noted: [28] constitute a linear system for the three 
amplitude functions a~ +, a~ + and a~. With the 'Rankine-Huginot '  relations [32] taken into account, 
the determinant of  the system vanishes, so that two of  the functions can be expressed in terms of  
the third, for example a~, as follows: 

a~(y) - a ~ _  T 1 [36a1 

a~(y) - [3 ~ a__~y) [36b] 

Table 1. Gas dynamic parameters in evaporation 

s~ p,lp~ p:l p, T~/ Tt # m lrho 
0.0 1.000 1.000 1.000 1.000 0 .000 
0.1 1.231 0.849 0.957 1.020 0.294 
0.2 1.500 0.728 0.915 1.060 0.494 
0.3 1.812 0.630 0.876 1.135 0.627 
0.4 2.170 0.550 0.838 1.271 0.714 
0.5 2.577 0.484 0.802 1.511 0.768 
0.6 3.037 0.429 0.767 1.928 0.800 
0.7 3.553 0.383 0.734 2.644 0.815 
0.8 4.127 0.345 0.703 3.862 0.820 
0.9 4.764 0.312 0.673 5.932 0.816 
0.907t 4.813 0.310 0.671 6.132 0.816 

tCritical value. 
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Then, [24b] can be worked out in terms of the one dependent variable, with the result 

da~ _ P (aL_ 1 ) ( a Z - r )  [37] 
dy 2e 

where 

n P~(/3--1)¢1¢2/z~(1-- ~LL) [38a] P - 1 2 p ~  

¢, = (P~-~ --2+/3(I- erfSoo))/(/3--l) [38b] 

4h = (z, -- 2 +/3(1 - erfS,))/(/3 - 1) [38c1 

2 4S~ 
r = X -  ~ + ¢2 [38d1 

Due to the solution of the conservation equations [32] as summarized in Table 1, it is clear that 
P and r in the above differential equations are both functions of one single parameter, S~, or 
ze = po/p~o, that characterizes the actual flow conditions. Equation [37] must satisfy boundary and 
external conditions as given in [21], so that ag(0) =/3 and a + ~ l  as y ~ ,  where/3 takes values 
as contained in Table 1. Then, since/3 > 1 always, except in the case of no net mass transfer for 
which S~ = 0 and/3 = 1, [37] can give the correct approach to the external Maxwellian state aL = 1 
only as long as the parameter r in the right-hand side of the equation stays below, or at unity. 
Hence, we have the condition from [38d]: 

2 4S~ 
0 [39] ~(s~) 4,,(s~) 

This inequality is satisfied for values of S~ on the interval [0, 0.907], or, for the Mach number 
M~ = (6/5)1/2S~ on the interval [0, 0.994]. This result suggests that the critical upper limit for the 
existence of the Knudsen layer solution is Moo = 1. Our computed critical flow conditions are 
included in the lower line of Table 1. 

The solution of [37] that gives the structure of the evaporation Knudsen layer is then as follows: 
f o r r <  1, 

~ _ 1  _ ( ~ _ - r r ) e x p  ( _ p ( 1  _ r ) y  ) [401 

f o r r =  1, 

a Z -  1 1 

/ 3 -  1 l + P ( / 3 -  1) 
[41] 

With [36a] and [36b] the distribution function is then fully specified, and any macroscopic quantity 
of interest may be computed from defining relations like in [23], for instance density and 
temperature: 

1 
P - lag(y) - 1]~q~, + 1 [42] 

poc 

T -  1 p__~I3S~+3+(ag(y)_l)ck2_2S2_~_ 1 [43] 
T~o 3 p 

Numerical values of parameters required to define the Knudsen layer structure are contained in 
table 2. 
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Table 2. Kinetic parameters in evaporation 

S~ r P 4] (p2 M~ = (6/5)"2S~ 

0.0 0.617 0.000 5.216 8.589 0.000 
0.1 0.525 0.047 4.162 6.853 0.110 
0.2 0.422 0.096 3.293 5.423 0.219 
0.3 0.310 0.146 2.583 4.254 0.329 
0.4 0.197 0.200 2.008 3.306 0.438 
0.5 0.099 0.255 1.546 2.545 0.548 
0.6 0.045 0.313 1.178 1.940 0.657 
0.7 0.089 0.373 0.888 1.463 0.767 
0.8 0.328 0.436 0.663 1.091 0.876 
0.9 0.934 0.501 0.489 0.805 0.986 
0.907t 1.000 0.506 0.478 0.786 0.994 

tCritical value. 

3. RESULTS AND DISCUSSION 

3.1. General  non-l inear results 

A fundamental finding in the present moment approach is the coupling of the external fluid 
dynamics variables to the interphase control parameters, TL and pe = psat(TL), in the gas-kinetic 
connection problem through the Knudsen layer, as expressed in [32a-c] and summarized in table 1. 
The dependence of a typical variable, So = v ~ / x / 2 R T ~ ,  upon the one single driving parameter 
ze = po/po~ = p o R T L / p ~ R T ~ ,  is exhibited in figure 2, where a comparison is made with numerical 
simulations of the full Boltzmann and Krook equations by Yen (1973) for a variety of  flow 
conditions. Also included in the figure are experimental points obtained from a kinetically similar, 
but physically different system of flow from a thin perforated plate as described by Ytrehus et al. 

(1977). In these experiments the flow was created by molecular effusion from each individual of 
a large number (typically 105 m 2) of perforations in a thin screen, such that the molecular boundary 
conditions [12] were realized in an average sense, but with a different definition of  the density po. 
The measurements were made by free-molecular orifice probes in a conventional low density wind 
tunnel. These results constituted the first proof of  the one-parameter aspect of  the flow conditions 
in the evaporation-effusion problem. 

Figure 3 shows the structure of the Knudsen layer in strong evaporation. Here the density from 
[38], and its inverse, the velocity, are plotted on the invariant scale 

2o 
d = P(1 - r) [441 

I J M F  22/ I - - J  

l l l l l , , , , I , , t , l , , , , I , , , ,  
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0 . 0  . . . .  I . . . .  I . . . .  I . . . .  I . . . .  
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Z e = p e / p o o  

Figure 2. Downstream speed ratio vs pressure parameter ze = p~/p~ in non-linear evaporation. 
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Figure 3. Knudsen layer structure at typical non-linear flow conditions. 

as suggested in the solution [40]. The plot reveals an expanding vapor  flow from the boundary .  
We note that, in the typical non-linear case, S~ = 0.5, we have for the density at y = 0, the 
vapor  side o f  the interphase surface, p(O)/p~ "~ 1.4, and f rom table 1 this is t ransformed into 
p(O)/po ~- 0.67. This means that  the density at the vapor  side is only about  2/3 o f  the saturat ion 
value corresponding to the temperature TL at the dense-phase side. 

N o w  let us consider the temperature.  F r o m  [43] and table 1 we obtain,  in the case o f  S~ = 0.5, 
a vapor  temperature at the surface T(O)/TL ~- 0.85. As will be discussed in section 3.4, this result 
implies that  vapors  o f  most  c o m m o n  substances will be highly supersaturated as they leave the 
interphase boundary .  

The temperature profile in the Knudsen  layer at critical flow conditions; i.e. for M~ = 1, is 
fur thermore shown in figure 4 in compar ison  with the experimental results o f  Mager  et al. (1989). 
These experiments were made by evaporat ing iodine into a low-density environment ,  and 
measuring the temperature in the vapor  flow by means o f  fluorescence spectroscopy. The results 
confirm the existence o f  a j ump  in the temperature f rom TL at the dense-phase side to T(0) --- 0.8TL 
at the vapor  side o f  the interphase boundary .  This is an impor tan t  first-order effect on boundary  
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Figure 4. Temperature profiles in Knudsen layer at critical flow conditions. 



KINETIC THEORY APPROACH TO INTERPHASE 145 

values that cannot be captured in continuum theory treatments of the evaporation problem. Also 
shown in figure 4 are the parallel and perpendicular temperatures, defined as 

lpRTII= flmc~"d~ I [45] 

where in general C 2 = (3 - n):. Again there is good agreement between theory and experiments 
close to the boundary for the quantity 7"1, whereas a marked discrepancy between the two is 
apparent for the quantity 7]1. The thickness of the vapor Knudsen layer in general follows from 
the scale [ defined by [44]. From table 2 it is quickly inferred that f varies from about 3/42e to 
several times this value as the evaporation increases from very weak, So << 1, to near critical 
S~ = 0.907. At critical conditions the solution [41] must be used, which yields the scale 

2o 
t c r -  [p(/~_ 1)],. ~ 2ke [461 

However, since the approach to equilibrium in this solution is algebraic rather than exponential, 
a length of the order of 10 [ ,  ~ 20 2~ is required for the relaxation to be completed. This result 
has been confirmed in a recent Monte Carlo simulation by Sibold & Urbassek (1993). 

The general non-linear theory predicts that the vapor Knudsen layer can expand only until the 
sonic value Moo = 1 is reached. From table 1 this corresponds to: po/p~ ~- 4.81, p~/p~ ~- 0.310, 
T~/Tc ~- 0.671. If  the external pressure is further reduced, i.e. to below about 1/5 p~ so that po/p~ 
exceeds the critical value 4.81, the remaining expansion must occur outside in the continuum flow. 

3.2. Relations to Schrage and Hertz-Knudsen formulae 
The net evaporated mass flux follows directly from the conservation equation [32a] and reads 

m = P e ~ / ~  - P ® X / ~ / ~ F -  (S~) [47] 

Here F -  (So~) is the function of dimensionless velocity S~ given in [30a] and fl is the boundary value 
relating to the mode incident upon the surface, e.g. [20], [21], [22]. The parameter fl may be 
interpreted as a non-equilibrium backscattering factor, since fl = 1 would correspond to 'pure  
streaming back into the surface by the half Maxwellian f~. Indeed, from table 1 we see that, at 
close to equilibrium conditions, S~<< 1, we have fl "-~ 1, whereas in the critical state at strong 
evaporation we have fl -~ 6. At critical flow conditions the net backflow-effect amounts to about 
18% of the emitted flux rh~, introduced in [1] and defined as 

y>0 

[48] 

and fl is thus seen to multiply a small number (,~0.03) in the normalized quantity re~me. 
The Schrage formula for the evaporated mass flux appears to differ from the expression [47] by 

the lack of the factor fl only, i.e. by Schrage (1953): 

/ RT~ 
/ F "S~" P°X/ - -t ) [49] 

This would not make a very serious variance with the expression [47]--if the external flow variables 
p~, T~ and So~ were locked to the boundary values pe and TL by the Rankine-Huginot-like 
gas kinetic connection problem as specified in section 2.4. Then the comparison would be as in 
figure 5, in which values for p~/pe and T~/TL are taken from table 1. However, the problem with 
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the Schrage formulation is that it fails to give the coupling between the external Maxwellian state 
and the physical control parameters TL and Pe = p=t(TL), so that values for p~ and T~ must be 
obtained from outside the Schrage theory itself. 

Similar statements can also be made about the Hertz-Knudsen formula [3] 

'n"* = P X / ~ - ~  - p~ 2= 

which neglects the whole bulk velocity effect in the external flow. Even so, the formula would give 
reasonable estimates for the mass f lux--if  proper values for p~ and To~ are provided from table 1, 
as shown in figure 5. The relative deviation from the more complete theory is, interestingly enough, 
larger at the medium and lower evaporation rates. 

Both the Hertz-Knudsen and the Schrage formulae are classical results for interphase transport 
phenomena, and both formulae are based on sound physical reasoning, the latter being a more 
refined version of the first. But neither of  these approaches realize the fundamental fact that only 
one of  the external flow variables is free of choice, and that the other two follow from the gas kinetic 
connection problem across the Knudsen layer. 

In figure 5 are further results from Monte Carlo simulations by Murakami & Oshima (1974), 
Sibold & Urbassek (1993), numerical BGK solutions by Kogan & Makashev (1971) and 
experimental results of Mager et al. (1989). Recent results from numerical solutions of the BGK 
equation from Sone & Sugimoto (1993) have also been included in the plot, and their deviation 
from the solid line of  the moment method is visible on the drawing only near the limit of  sonic 
flow conditions. 

3.3. Linearized results 

The non-linear cases of strong evaporation are extreme in the sense that they require 
substantial energy sources, either by radiation from outside or by thermal energy storage in the 
dense phase, in order to be realized. In many situations of practical interest the evaporation 
is weaker, and the theoretical results may be linearized into simple formulae. Under conditions 
such that 

& < <  1 [50] 
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we have from the systems [30a]-[30c] and [32a]-[32c], with errors of the order of S=~: 

A/~ = ( - ~  9w/-~ ) 
16 S~ 

and, by means of the equation of state, 

TL -- S~ 

p-7- 7 + 

[511 

[52] 

Here, the small deviations from phase-equilibrium are defined by: 

P----~ = 1 +Aze, A T =  TL-- T~ "1 
p~o ~ [53] 

f = l + A f t ,  A p = p , - p ~ ,  

since we have in mind first of all the case of net evaporation. A linearized expression for the mass 
flux is then readily available, and may be conveniently stated in the form 

x//-~S~ 0.13148~ x//-~S~ [54] 

showing the relative importance of the various contributions: 
(i) Hertz-Knudsen theory 

+ ~ -~TL 

(ii) non-equilibrium backscattering (Aft) 
(iii) bulk velocity effect (AF-). 

The non-equilibrium backscattering is thus seen to be relatively small under conditions of weak 
evaporation, whereas the bulk velocity effect from the external state is not. The numbers fitted into 
[54] then show that the popular linearized Hertz-Knudsen formula underestimates the mass flux 
by a factor of about 2. Writing the expression in terms of Ap alone, we have, after the use of [51], 
[52] and [53] 

, R ~ L  "~/R/r-~L~-~ 3232~+ 5rt "~ 2.107(p~ -- p )~/ ~ [55] rh = (p~ -- P~)I - -  

This important correction to the classical Hertz-Knudsen formula is, for the most part, due to the 
account of the macroscopic bulk velocity in the external state, which results from the evaporation 
process itself. 

Since, in many cases, the pressure rather than the density is the natural choice for matching the 
variable against the external flow field, we also give the formula in terms of pressure difference 

~/RTL Ap 3Dt p0 - p~ 
rh=pe 2~ pe 32+9r t  - 1.668 [561 

Similar mass flux formulae have been arrived at by several authors, for instance Pao (1971), Kogan 
& Makashev (1971) and Sone & Onishi (1978), and the numerical factors differ only slightly due 
to specific approximations made in the various methods. These formulae also apply for the case 
of net condensation onto the phase boundary, for which p~ - po > 0 and rh < 0. Hence evaporation 
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Figure 6. Definition sketch for evaporation into a shear flow. (a) External flow domain and (b) details 
from the Knudsen layer domain. 

and condensation are antisymmetric phenomena in the linear regime, as long as only the Knudsen 
layers are considered. 

3.4. Evaporation into a shear flow 

As an example of  the coupling that in general must be made between the Knudsen layer flow 
and an external flow field on a macroscopic scale, we now consider the situation indicated in 
figure 6. An initially uniform vapor-flow with parameters U~, p~ and T~ is approaching parallel 
to a fiat surface of its own condensed phase, kept at rest and at temperature TL. The condensed 
phase is furthermore confined to a thin fiat plate with the leading edge at x = x0, and with finite 
length L. We assume that the incoming vapor  is saturated in its initial state and that T~ < TL, and 
consequently that p® < psat(TL) = pc. Hence, evaporation will occur at the interphase surface. It is 
also assumed that (TL- T<)/TL<< 1, (p¢-  p~)/po<< 1, so that the linearized Knudsen layer results 
may be applied. In order not to confuse the notation, we use subscript k to indicate conditions 
at the outer edge of  the Knudsen layer [figure 6(b)] reserving subscript oo for the undisturbed 
vapor-flow conditions at upstream infinity. The vapor  flow field outside the Knudsen layer is 
described by standard two-dimensional Navier-Stokes equations with a k-E model added to 
account for turbulence. 

In the linear case the Knudsen layer folding length is 3/4 ~.e, and the thickness is therefore a few 
times this value. However, the smallest scale that occurs in the Navier-Stokes equations is of  the 
order 

and, since Sk is small in the sense ([50]) 

2¢ [57] 
f N s -  Sk 

Sk "~ pe - pk << 1, [58] 
pe 

in general we have 

EN.S )3>/~e 

This is the basis for applying the formal matching condition 

G y 

[591 

[601 
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between any two corresponding quantities g and G in the Knudsen-layer and Navier-Stokes 
solutions. This relates back to the fundamental issue of  singular boundary layers for the Boltzmann 
equation in the limit of  K n ~ 0 ,  as mentioned in section 2.1. In particular we have, with reference 
to figure 6(a) and (b): 

Vk = Vw, T k =  Tw, pk=pw [61] 

where subscript w denotes 'wall-values' for the Navier-Stokes variables and subscript k means 
'infinity' in Knudsen layer variables. The true wall-values, as indicated by v(0) and T(0) in 
figure 6(b), occur only in the kinetic theory solution and are not further dealt with here. 

From [61], [56] and [51] the particular boundary conditions that couple the Knudsen layer to 
the Navier-Stokes domain at y = 0, x0 ~< x <~ x0 + L, are: 

4 po--pw [62a] 
° p o  

TL p~ -- p~ [62b] Tw=TL fl~ PC 

with tic as a new numerical factor 

32 + 9n 
tic - 4rr ~ 4.7965 [63] 

The wall-pressure in the Navier-Stokes solution is thus seen to be the matching parameter  that 
determines the evaporation rate and the temperature at the exit of  the Knudsen layer. Since the 
incoming vapor  is in a saturated state, we also have, by the linearized Clapeyron equation, 

TL po -- p ~  [64] 
To~ = TL flH p t  ' 

where flH = A H / R T L  is a substance parameter  based on the latent heat of  evaporation AH. 
The Navier-Stokes equations were solved numerically on the physical domain shown in figure 

6(a), using the T E A C H - T  code, where, in addition to the boundary conditions shown in the figure, 
a tangential no-slip condition at the interphase surface was applied, u = 0 for y = 0, 
x0 < x < x + L, and a normal derivative condition ~u/Sx  = 0 was imposed at the outlet, 
x = x0 + L, 0 < y < H. The slip boundary indicated at y = H was introduced to limit the 
computat ional  domain, and a distance H - 7L was found to be required for not causing local 
effects along the interphase surface. 

The extent of  the domain was then chosen as: x0 = 0.5 m, L=0 .55  m, H = 3 . 5  m, and physical 
data were selected to represent water vapor  close to atmospheric pressure: TL = 373.16 K, 
pe = 1 arm, with po~ in the range 0 . 9 7 -  0.998 atm. A driving parameter  for the problem is seen to be 

Abs - pe - P~ ,  [65] 
p, 

and the constant latent heat parameter  flH takes the value 13.097, along with a gas constant 
R = 461.96 J/K/kg.  

We considered incoming velocities U~o in the range 20-50 m/s, and we solved the discretized 
governing flow equations on rectangular grids ranging from 21 x 21 cells to 41 x 41 cells. The grids 
were contracted near the interphase surface and near the leading edge. 

The T E A C H - T  code uses the SIMPLE algoritm (Patankar 1980), and start-values are required 
to initiate the iterations. We chose Uin = U~, pin = p~ and Tin = T~o as initial values, from which 
values for the boundary conditions Vw and Tw were obtained by [62a] and [62b] with pw = p~. This 
would then start an iteration on the parameter  (pc -pw)/p~ in these equations, such that 

pe - -  po~ 

, 11 pe 

and a converged solution would normally be obtained after 300--400 iterations in the system. Some 
typical results for a case with U~ = 20 m/s and Aps=2.1 x 10 -3 are shown in figure 7 [from 
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Stinessen (1988)]. The dotted lines are for laminar flow, whereas the solid lines represent turbulent 
flow, in both cases for a Reynolds number  of  5.21 x 10 s, based on the plate length. The turbulence 
intensity was then set low, typically 10 5, in the incoming flow, but developed very quickly as the 
leading edge of  the plate and the cross-flow region was approached. 

We see that the pressure at y = 0 is almost symmetric around the leading edge in the laminar 
case, but that generation of turbulence distorts this picture somewhat. At the downstream part  of  
the plate the two solutions develop rather differently. However, in both cases we see qualitatively 
similar trends, and these Navier-Stokes predicted pressures are both very different from the 
constant value that is assumed in classical boundary layer theory for shear flow along a non-reactive 
surface. This is clearly due to the fact that the injection velocities considered here are much larger 
than typical lateral boundary layer velocities, VBL, SO that a boundary layer would be blown off 
from the surface immediately after the injection is introduced. We have in the present case: 

v~-~ 2x/fR~L p° - p~ - 1 m/s 
po 

UB.L ~ U - ~ / ~  ~ 10 - 2  ~ 10- 1 m/s, 

and in general, typically v~>>v~L. The pressure field is hence, in effect, computed from an elliptic 
Poisson type of equation with an upstream influence length of the same order of  magnitude as the 
geometrical scale of  the problem, as is normally the case for full Navier-Stokes solutions. 

The pressure at the wall is generally higher than p ,  at the upstream part  of  the surface and lower 
than p~ downstream. In the case shown in figure 7(a) the shift occurs at about x = 0.75 m, which 
is half-way down the evaporating surface. At this point the injection velocity and the mass flux 
are predicted by the value p~ for pw in the expression [62], which, from figure 7(b), corresponds 
to Vw -~ 0.58 m/s. This corresponds, furthermore, to the first iteration in the solution, and would 
be the natural estimate to make for the average injection velocity, in the lack of local resolution 
of the problem. 

The increase in injection velocity as we move downstream along the surface [figure 7(b)] follows 
directly from the falling trend of  pw. But this is all conditional by the thermostat assumption for 
the liquid phase; TL = const., which leads to pc =psa,(TD = const., too. For different thermal 
conditions in the dense phase, the results would be different, but the matching principle and this 
method of solution would still apply. 

In principle, the boundary conditions [62] could have been expressed in terms of temperature 
TL - -  Tw instead of pressure p0 - p w ,  and the coupling could have been attempted in the energy 
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equation instead of  in the momentum equation of the Navier-Stokes system. However, the 
temperature field can be determined only after the velocity and pressure fields are known, so 
therefore the velocity and pressure would have to be solved for initially in any case, which requires 
the original version [62] as input, with pressure as the primary variable. 

Finally, it should be remarked that the present approach assumes the normal continuum flow 
conditions [7] and [19] to be valid. Should they not be, so that M/x/Re is not a small quantity, 
as would occur in high-speed or low-density cases, the Knudsen layer may no longer be simply 
separated from the rest of the flow field, and the Boltzmann equation may have to be applied to 
a global scale of  the problem. 

3.5. Thermodynamic aspects of  the vapor 

Since the complete state of  the vapor flow in the Knudsen layer--including its external edge--is 
determined from the Boltzmann equation alone, there is no reason to assume that such states will, 
in general, correspond to saturation. This may simply be demonstrated from the linearized results, 
with immediate extensions to the general non-linear case. 

The pressure-temperature relation across the Knudsen layer is conveniently represented in [62], 
which we rewrite as 

A~ = fleA i", [66] 

in which Ap and AT are the normalized differences (po -pk)/pe and (TL -- TO/TL, respectively. On 
the other hand, if the state (Tk, po) at the edge of the Knudsen layer is replaced by a saturated state 
(Tsat, psat), we obtain from the linearized Clapeyron equation 

Apsat = flnA L a t  [67]  

where flH = AH/RTL is the normalized latent heat parameter. By comparison of  the two expressions 
above, we find that the superheat ATs is given by 

AT [681 m T s =  Tk - -  Tsat = (fie - -  ~H) flH ' 

where again AT = TL -- Tk. Now, tic is a constant parameter in the linear evaporation regime, and 
according to [63] it has the value 4.7965. Then, for latent heat parameters below this value the vapor 
is superheated, whereas substances with latent heat parameters above this value will be supercooled, 
or supersaturated when they leave the Knudsen layer, as simply expressed by [68]. According to 
Troutons rule, most common substances will have flu values of the order of  10, so therefore, in 
most cases, supersaturation must be expected to occur. In particular, for water vapor at 
TL = 373.16 K, the value was found to be flH = 13.097. The boundary values applied at the surface 
in the shear flow problem of the previous section therefore represent a highly supersaturated state, 
and the possibility of homogeneous recondensation and formation of  mist should be taken into 
account in such cases. 

The situation in the general non-linear case is not much different. The parameter fl~ will depend 
upon the flow conditions and will be given by the expression 

tic = In (Pe/PO. [69] 
1 - T ~ / T L '  

otherwise [68] remains valid. The parameter takes values that are rather close to the one for the 
linear case, but the temperature difference AT = T L -  Tk is much larger and so becomes ATs. 

A final and interesting observation may be made with reference to the case S~ = 0.5 in figure 3 
as discussed in section 3.1. Evaluating the parameter tic according to [69] at the edge of  the Knudsen 
layer gives the value 4.79, whereas at the interphase boundary with T(0) and p(0) = p(O)RT(O) we 
get 3.75. The absolute value of  the difference//c - flH will therefore be larger in the latter position, 
if water vapor with flH --~ 13 is again considered. The temperature difference in the expression 
corresponding to [68] will, however, be smaller, since TL -- T(0) ~< TL -- Tk, and when the figures 
are worked out, we obtain ATs --- - 0.126 TL at infinity, and ATs -~ 0.107 TL at the surface. This 
result shows that the supersaturation for a large part is caused by the actual phase change itself; 
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i.e. from T = TL to T = T(0) across the interphase surface, and that the effect is further slightly 
enhanced as the vapor expands through the Knudsen layer. 

3.6. Effect of non-unity evaporation condensation coefficient 

So far all the results have been derived under the assumption that the evaporation~condensation 
coefficient aw in [10] has been unity, such that the reflection m o d e l  in that equation and in figure 
1 has been absent. Although experimental information on the coefficient aw in interphasial processes 
is scarce, it is known that its value may vary considerably below 1, depending upon the actual 
substance considered and upon the surface conditions. This view is further substantiated by recent 
molecular dynamics simulations of the phase transition (Matsumoto 1995) from which values for 
aw down to 10- 3 are extracted under certain realistic circumstances. Therefore, it is of considerable 
interest from a practical point of view to incorporate the effect of non-unity aw in the theory of 
evaporation-condensation phenomena. 

Assuming that the fraction (1 - aw) of the impinging molecules is reflected from the interface 
according to a Maxwellian distribution fr at the surface temperature TL, we have the flux condition 

f ~frd~ = (1 -- aw) I I~f(0d)ld~ 
1<0 ~>0 

in which f(0, 3) for ix < 0 is inserted from [22]. For the related density this gives 

Pr  ~-- (1  - -  a w ) p : ~  flF-(S~) 

[701 

[71] 

Thus the slightly more general boundary condition is obtained by replacing the density pe by the 
new expression 

po--*awpe + (1 -- aw)p~ flF-(S~) [721 

which allows the original results to be transformed to the more general case in a simple way, as 
shown for instance by Kogan & Makashev (1971) and Sone & Sugimoto (1993). Here we give the 
final results only for the linear case of  weak evaporation and condensation, for which the mass 
flux formula [55] transforms into 

aw 

 )aw 
[73] 

From this expression we see that the mass flux decreases faster than linearly with decreasing aw, 
in particular in the range of aw that is not much below unity. For  small values of aw the variation 
is essentially linear, since the numerical factor in the denominator of [73] has the value 0.5254. This 
latter figure should be compared to 0.535 from Kogan & Makashev (1971) and 0.5246 from Sone 
& Onishi (1978). 

Also the thermodynamic state of  the vapor is affected by the evaporation-condensation 
coefficient. Instead of [68], the superheat ATs is now given by the expression 

_ _  ) A T  
ATs = Tk -- Tsar = f l¢+8  1 - a w  flu 

aw flH 
[74] 

where, again, tic = 4.7965, AT = TL -- Tk and flH = AH/RTL is the latent heat parameter. 
For  a case of  aw = 0.5, the limit between superheat and supercooling is shifted to flu = 12.7965 

(from flu = 4.7965), closely corresponding to the value of  flu for water at 373 K. Substances with 
a latent-heat parameter above this value will then give supersaturated vapor, whereas substances 
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with values below it will be superheated. As is evident from [74], the actual limit is very sensitive 
to the value taken by the coefficient aw. 

4. CONCLUDING REMARKS 

We have shown that a molecular description is required to capture the basic fluid-flow and 
thermodynamics aspects of interphasial processes in single-component liquid-vapor or solid-vapor 
systems. A quantitative analysis has been performed based on a four-moment solution of the 
Boltzmann equation, which to the best of our knowledge, is still the only analytic solution available 
for arbitrarily strong evaporation. Several specific points have been made, such as" 

(i) a consistent definition of the external vapor state and its coupling to the dense-phase 
temperature TL in terms of one single control parameter, the pressure-ratio pe/po~, where 
po = p~at(TL), 

(ii) the existence of a limiting upper value for this parameter, (pe/po~)cr ~-- 4.81, corresponding to 
sonic velocity of the vapor flow away from the interphase surface, 

(iii) an interpretation and assessment of the Hertz-Knudsen and Schrage mass transfer formulae, 
and the need for a proper definition of the external vapor state in order for these formulae 
to work well, 

(iv) the role of the pressure as a prime variable in the matching between the molecular and 
continuum flow regimes in a global problem treatment, with shear-flow outside of the 
normal-flow evaporation-condensation layer, and 

(v) the strong tendency for common substances (in the sense of Trouton) to become 
supersaturated in evaporation, for unity or, near unity, evaporation-condensation 
coefficient. 

Our main findings agree well, also at the quantitative level, with results from more accurate 
numerical resolutions of the detailed Boltzmann equation, and with Monte Carlo simulations, in 
the whole flow regime of evaporation. This indicates that the kinetic theory approach has, in 
general, led to converged results for evaporation, and, at least in the linear case, also for 
condensation. 

It appears that the most ambiguous element in the theory lies in the gas kinetic boundary 
conditions, relating to such elements as evaporation and condensation coefficients for surfaces that 
are active in the phase-transfer process. Values for such coefficients must be obtained 
experimentally, or by molecular dynamics considerations in the dense phase, and they may indeed 
turn out to depend upon the intensity of the process. This is to be suspected on the background 
of the significant and rate-dependent temperature jump across the interphase surface that is 
predicted in the present study. 
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